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118 route de Narbonne, 31062 Toulouse, France
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Abstract. The ground-state properties of C20 fullerene clusters are determined in the framework of the
Hubbard model by using lattice density-functional theory (LDFT) and scaling approximations to the
interaction-energy functional. Results are given for the ground-state energy, kinetic and Coulomb energies,
local magnetic moments, and charge-excitation gap, as a function of the Coulomb repulsion U/t and for
electron or hole doping δ close to half-band filling (|δ| ≤ 1). The role of electron correlations is analyzed
by comparing the LDFT results with fully unrestricted Hartree-Fock (UHF) calculations which take into
account possible noncollinear arrangements of the local spin-polarizations. The consequences of the spin-
density-wave symmetry breaking, often found in UHF, and the implications of this study for more complex
fullerene structures are discussed.

PACS. 36.40.Cg Electronic and magnetic properties of clusters – 71.10.Fd Lattice fermion models
(Hubbard model, etc.) – 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nan-
otubes, and nanocrystals

1 Introduction

The discovery of the C60 fullerene [1] and the remarkable
physical and chemical properties resulting from its unique
topology and electronic structure have motivated an ex-
traordinary research activity in past years [2]. One of the
recent questions of interest in this field is the possibility
of producing even smaller C or Si cagelike clusters and
to synthesize novel solids using them as building blocks.
Thus, several experimental and theoretical studies have
been performed in order to elucidate the complex mech-
anisms of formation of these nanostructures [3–9]. In the
particular case of C20, which is expected to be the smallest
fullerene, experiments indicate that the dominant species
in laser-vaporization of graphite are ring structures, while
theory yields different isomers depending on the calcula-
tion method [10–17]. Hartree-Fock (HF) studies predict
that the ring is the lowest-energy isomer, followed by the
bowl (a substructure of the C60 fullerene) and then by
the dodecahedral cage [14–16]. In contrast, the local den-
sity approximation (LDA) to density-functional theory
(DFT) yields the cage to be more stable than the bowl and
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the ring, whereas in a generalized gradient approximation
(GGA) the same ordering as HF is obtained [14–16]. These
investigations, as well as quantum Monte Carlo (QMC)
calculations [17], indicate that non-trivial electron corre-
lation effects play a central role in the structural and elec-
tronic properties of these nanoclusters.

Recently, Prinzbach and coworkers succeeded to pro-
duce the cage-structured fullerene C20 in the gas phase
starting from the perhydrogenated form C20H20 [6]. This
isomer, which is not formed spontaneously in carbon
condensation or cluster annealing processes, has a suffi-
ciently long lifetime. Moreover, photoelectron spectrum
(PES) measurements have been performed from which
its cage-like structure has been inferred [6]. Theoretical
studies by Saito and Miyamoto have reproduced the PES
thereby confirming the structure assignment given in ex-
periment [7]. In addition, experimental evidence has been
provided on the oligomerization of C20 fullerenes [8] and
on the formation of a solid phase of C20 dodecahedra [9]
which, unlike C60 solids, involve strong C–C bonds be-
tween the pentagons of neighboring units.

Besides its experimental realization, the topology of
C20 appears to be a particularly attractive physical
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situation for theoretical investigations of correlated itin-
erant electrons in cagelike clusters with pentagonal rings.
Similar studies on C12 and C60 clusters have already been
performed in relation to alkali-metal-doped C60 solids like
K3C60 and Rb3C60 [18], since one expects that the basic
physics behind the superconducting and optical properties
of these materials should be captured at the scale of an
individual molecular constituent. The smaller fullerenes
have attracted a special attention in this context due to
the perspective of achieving larger superconducting tran-
sition temperatures than the C60-based solids. Indeed, a
number of theoretical investigations predict a significant
enhancement of the electron-phonon coupling as the size
of the fullerene is reduced from C60 to C36, C28, and fi-
nally C20 [5,19,20]. Consequently, theoretical studies aim-
ing at understanding the properties of correlated electrons
in small fullerene clusters are of considerable interest.

Lattice models have been used to determine low-
energy properties of C60 which derive from the outermost
half-filled π-electron cloud. In particular, the spin-density
distribution on the buckyball has been analyzed in a series
of papers [21–26]. Coffey and Trugman [21] calculated the
ground-state spin configuration using a classical antiferro-
magnetic (AF) Heisenberg Hamiltonian corresponding to
the strongly correlated limit of the Hubbard model. They
found that the lowest-energy spin structure shows a non-
trivial noncollinear order which minimizes magnetic frus-
trations within each pentagonal ring, keeping strong AF
short-range order in bonds connecting nearest neighbor
(NN) pentagons [21]. The spin structure in C60 was also
investigated by means of Hubbard or Pariser-Parr-Pople
Hamiltonians at half-band filling, taking into account on-
site and inter-site Coulomb interactions within the un-
restricted Hartree-Fock (UHF) approximation [23–26]. A
common result of these investigations is the presence of
a magnetic instability for a critical value Uc of the on-
site Coulomb repulsion yielding a magnetic order which
resembles that of the classical AF Heisenberg model.
In addition remarkable noncollinear spin arrangements
and charge-density redistributions have been obtained in
mean-field calculations as a function of electron and hole
doping [26]. QMC simulations on C60 at half-band filling
and exact diagonalization studies of cagelike C12 support
the existence of non-vanishing short-range spin correla-
tions [22,27]. However, it should be recalled that there
is no experimental evidence for an spontaneous symmetry
breaking. Instead, the spin-density-wave instability should
be interpreted as an indication of fluctuating spin-spin cor-
relations within the cluster. It is therefore interesting to
improve on the treatment of correlations in order to quan-
tify the possible effects of artificial symmetry breaking on
the electronic properties.

The purpose of this paper is to investigate the ground-
state properties of correlated electrons on a C20 cage-
like cluster by using the Hubbard Hamiltonian and
a recently developed lattice density-functional theory
(LDFT) [28,29]. Previous applications of this approach to
1D and 2D lattices have yield quite accurate ground-state
properties for all band fillings and interaction regimes. A

Fig. 1. Illustration of the geometry of the cagelike C20 cluster.

particularly interesting feature in the present context is
that LDFT does not necessarily involve a symmetry break-
ing in order to account for the effects of electron correla-
tion and localization in the strongly interacting limit [29].
Thus, it appears as an appropriate means of improving on
UHF calculations. Moreover, besides the aspects specifi-
cally related to C20 and its topology, the present calcula-
tions should be of interest as a finite cluster application
of new density-functional approaches to lattice fermion
models [30].

The body of the paper is organized as follows. In Sec-
tion 2 the model Hamiltonian and the main steps in the
formulation of LDFT are briefly recalled. Results for the
ground-state energy, kinetic and Coulomb energies, lo-
cal magnetic moments, and charge excitation gap of C20

are presented and discussed in Section 3 as a function of
Coulomb repulsion U/t and for electron or hole dopings
δ close to half-band filling (|δ| ≤ 1). Finally, Section 4
summarizes the main conclusions and discusses some per-
spectives of extensions in view of applications to lower
symmetry structures.

2 Model Hamiltonian and calculation method

We consider the Hubbard Hamiltonian [31]

H = −t
∑

〈i,j〉σ
ĉ†iσ ĉjσ + U

∑

i

n̂i↓n̂i↑, (1)

on the C20 structure illustrated in Figure 1. In the usual
notation, ĉ†iσ (ĉiσ) refers to the creation (annihilation) op-
erator of an electron with spin σ at site i, and n̂iσ =
ĉ†iσ ĉiσ to the corresponding number operator. The first
term is the kinetic-energy operator with hopping integrals
tij = −t < 0 for NNs and tij = 0 otherwise. The second
term takes into account intraatomic interactions by means
of the on-site Coulomb repulsion integral U . Given the
lattice structure and the number of atoms Na = 20, the
model is characterized by the number of electrons Ne, or
doping δ = Ne − Na, and by the ratio U/t.

In order to determine the ground-state properties we
consider a density-functional approach to electron corre-
lations in a lattice, in which the fundamental variable is
the single-particle density matrix γij [29]. The ground-
state energy Egs and density matrix γgs

ij are determined
by minimizing the energy functional

E[γ] = EK [γ] + W [γ] (2)
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with respect to γij . The first term in equation (2) is the
kinetic energy

EK [γ] =
∑

ij

tijγij (3)

associated with the electronic motion in the lattice. The
second term is the interaction-energy functional, formally
given by [32]

W [γ] = min
Ψ→γ

[
U

∑

i

〈Ψ[γ]|n̂i↑n̂i↓|Ψ[γ]〉
]

, (4)

where the constrained minimization runs over all
N -particle states |Ψ[γ]〉 that satisfy

〈Ψ[γ]|
∑

σ

ĉ†iσ ĉjσ |Ψ[γ]〉 = γij (5)

for all i and j. Thus, W represents the minimum value
of the interaction energy compatible with a given de-
gree of electron delocalization or density matrix γij . The
universal functional W [γ], valid for all lattice structures
and hybridizations, can be considerably simplified if the
hopping integrals are short ranged. For example, if only
NN hoppings are considered as in the present case, the
kinetic energy EK is independent of the density-matrix
elements between sites that are not NNs. Therefore, the
constrained search in equation (4) may be restricted to
the |Ψ[γ]〉 that satisfy equation (5) only for i = j and
for NN ij. Moreover, for highly symmetric clusters like
C20, one has the same equilibrium value of γij for all NN
pairs ij, and γii = n = Ne/Na for all sites i. The inter-
action energy can then be regarded as a simple function
W (γij) of the density-matrix element between NNs. How-
ever, notice that restricting the minimization constraints
in equations (4) and (5) to NN γij also implies that W
loses its universal character, since the NN map and the
resulting dependence of W on γij are in principle differ-
ent for different lattice structures [28,29].

Two previously investigated scaling approximations to
the interaction energy W of the Hubbard model shall be
used for the calculations [29,33]. In the first one the func-
tional dependence is derived from the exact solution of
equation (4) for the Hubbard dimer. It is given by [29]

W (2) = EHF

(
1 −

√
1 − g2

ij

)
, (6)

where EHF = NaUn2/4 refers to the Hartree-Fock energy
and gij = (γij − γ∞

ij )/(γ0
ij − γ∞

ij ) measures the degree of
electron correlation in a NN bond ij. Here, γ0

ij > 0 stands
for the largest possible value of the bond order γij for a
given Na, band filling n = Ne/Na, and lattice structure. It
represents the maximum degree of electron delocalization
regardless of correlations. γ∞

ij refers to the strongly corre-
lated limit of γij , i.e., to the largest NN bond order that
can be achieved under the constraint of vanishing W . For
half-band filling γ∞

ij = 0, while for n �= 1, γ∞
ij > 0 [34].

Thus, gij = 1 in an uncorrelated state, and gij = 0 in
the strongly correlated limit corresponding, for example,

to a fully localized or fully spin-polarized state (Nagaoka
state). Physically, the scaling hypothesis underlying equa-
tion (6) means that the relative change in W associated
with a given change in g12 is considered as independent
of the system under study. Exact numerical studies of the
functional dependence of W have shown that this is a good
approximation in a wide variety of 1D, 2D, and 3D lat-
tices and band fillings [28]. Notice that EHF, γ∞

12 , and γ0
12

are system specific. In practice, γ∞
12 is approximated by

the ferromagnetic fully-polarized γFM
12 which can be ob-

tained, as EHF and γ0
12, from the single-particle electronic

structure.
The dimer approximation to W is very appealing

since it combines remarkable simplicity and good accu-
racy [29,35]. Nevertheless, it also presents some limita-
tions particularly in the limit of strong correlations at
half-band filling. For Ne = Na and small γij , W (2) can be
expanded as W (2) = (1/8)α2Uγ2

ij + O(γ4
ij) with α2 =

(γ0
ij)

−2 (e.g., α2 = 2.92 for a pentagonal ring and α2 =
4.16 for C20). The exact functional W shows the same be-
havior but usually with a somewhat larger coefficient αex

(e.g., αex = 3.21 for a pentagonal ring and α2 = 5.22 for
C20) [36]. These discrepancies have direct consequences on
the resulting ground-state properties for U/t � 1, since in
this limit γgs

ij � (4z/α)(t/U) and Egs � −(2z2/α)(t2/U),
where z is the local coordination number (EK = −ztγij).
In order to improve the accuracy a more flexible approxi-
mation has been proposed which is also based on the scal-
ing properties of W , and which recovers the exact depen-
dence on γij for γij → 0. In this case the interaction energy
includes a fourth-order term in gij and is given by

W (4) = EHF

(
1 −

√
1 − κg2

ij + (κ − 1)g4
ij

)
, (7)

where κ = αex/α2. In a pentagonal ring κ = 1.10, while
in the C20 cluster κ = 1.26. These values should be com-
pared with the dimer result κ = 1, for which equation (7)
reduces to equation (6). Thus, the 4th-order term appears
as a moderate correction to the dimer or 2nd-order ap-
proximation (g2

ij ≤ 1). Previous applications to 1D and
2D systems have shown that equation (7) provides a sys-
tematic improvement on the ground-state properties for
all U/t [33]. In the following section, equations (6) and
(7) are applied to determine several electronic properties
of the C20 Hubbard cluster in the framework of LDFT.

3 Results

The Hubbard model is characterized by the dimensionless
parameter U/t and by the number of electrons Ne or the
doping δ = Ne − Na. We consider the complete range of
repulsive interactions (U ≥ 0) and single electron or hole
dopings (|δ| ≤ 1). The value of U/t gives a measure of
the importance of correlation effects. Realistic estimates
of U and t for C60 are U � 9 eV and t � 2–3 eV [38,
39]. Thus, commonly accepted values of U/t for the π-
electrons in carbon fullerenes fall into the intermediate
range 2 ≤ U/t ≤ 5 [23–26]. As it will be discussed
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Fig. 2. Ground-state energy Egs of the Hubbard model on a
pentagonal ring as a function of Coulomb interaction U/t for
different numbers of electrons Ne = Na + δ close to half-band
filling (Na = 5) [40]. For δ = 1, results for Egs − U are shown.
The solid curves correspond to lattice density-functional theory
(LDFT), the crosses to exact numerical diagonalizations, and
the dashed curve for δ = 0 to unrestricted Hartree-Fock (UHF)
calculations including noncollinear spin arrangements.

below, this corresponds to a crossover between weakly-
interacting delocalized electrons and strongly-correlated
localized states. It is therefore, interesting to investigate
the electronic properties in the full interaction range, par-
ticularly in order to follow the changes from weak to strong
interactions, and to approach the crossover behavior from
both sides.

Before discussing the results for the C20 cluster it
is useful to consider a single pentagonal ring as a pre-
liminary test on the accuracy of the method, since the
pentagon constitutes the basic building block of the C20

structure, and since it is small enough so that exact di-
agonalizations can be easily performed. Figure 2 shows
results for the ground-state energy Egs of the Na = 5 ring
as a function of U/t [40]. In the uncorrelated limit Egs de-
creases monotonously with increasing number of electrons
Ne = Na + δ ≤ 6 since the three lowest single-particle
eigenvalues of the ring are negative. On the other side, for
large U/t, Egs vanishes at half-band filling while for neg-
ative (positive) doping Egs (Egs − Uδ) remains negative.
In fact, for δ = 0 the suppression of charge fluctuations
always implies electron localization, whereas for |δ| = 1
a finite kinetic energy persists, even for U/t � 1, due to
the delocalization of the extra electron or hole. The LDFT
calculations reproduce remarkably well the crossover be-
tween weak and strong correlations as given by the ex-
act diagonalizations. Appreciable discrepancies are found
only for δ = −1 and U/t ≥ 6, in which case the largest
relative error amounts to |ELDFT

gs −Eex
gs |/|Eex

gs | � 0.07 for
U/t � 12. In the other cases (δ = 0 or 1) the LDFT results
are practically indistinguishable from the exact ones.

In order to quantify the effects of electron correlations
we have also performed calculations by using the fully un-
restricted Hartree-Fock (UHF) approximation which cor-

responds to the most general single-Slater-determinant
wave-function and which allows for noncollinear site-
dependent spin polarizations 〈�Si〉 [26]. Figure 2 shows the
UHF results for Egs of the pentagonal ring at half-band
filling (δ = 0). For U/t < Uc � 0.27 the only solution to
the self-consistent equations is non-magnetic (i.e., 〈�Si〉 = 0
for all i), while for U/t > Uc local magnetic moments
〈�Si〉 set in. These increase monotonously with U/t reach-
ing saturation in the limit of U/t → ∞. Concerning the
magnetic order one observes that the 〈�Si〉 are all coplanar
and that the angle between NN moments is 4π/5 for all
U/t > Uc. This amounts to split one parallel-spin frustra-
tion among five bonds which corresponds, as expected for
half-band filling, to the solution of a classical Heisenberg
model with antiferromagnetic NN interactions. One ob-
serves that UHF reproduces the U/t dependence of Egs

qualitatively well, including the strongly correlated limit
where Egs → 0. This is achieved by localizing the elec-
trons through the formation of increasingly large local
magnetic moments as U/t increases. Nevertheless, signif-
icant quantitative discrepancies with the exact numerical
solution are observed already for U/t ≥ 2, which reflect
the importance of electron-correlation effects. These can
be regarded in part as the result of fluctuations between
different spin configurations which cannot be recovered in
a single-determinant state [42]. In contrast, LDFT gives
a much better description of the ground-state, particu-
larly in the intermediate and strong interacting regimes.
UHF overestimates Egs appreciably, while the differences
between exact and LDFT results are very small.

More detailed information on the correlation effects
and on the accuracy of the calculations is obtained from
the kinetic energy EK , Coulomb energy EC , and local
square magnetic moments 〈S2

i 〉 presented in Figure 3.
LDFT accurately reproduces the exact numerical solution,
showing that the very good results obtained for Egs are
not the consequence of important compensations of errors.
Moreover, the differences between 2nd-order and 4th-order
approximations to W [see Eqs. (6) and (7)] are quite small,
typically of the order of the differences between the 4th-
order calculations and the exact results. Nevertheless, one
may observe that the interaction-energy functional W (4)

provides a consistent improvement with respect to W (2).
In fact taking into account the 4th-order term yields a
small increase (reduction) of EC for U/t < 4 (U/t > 4) as
well as a small reduction of |EK | for U/t > 4 which bring
the outcome of LDFT systematically closer to the exact
solution [41].

In contrast to LDFT the UHF calculations do not
provide a correct description of the kinetic and Coulomb
energies separately. On the one side, for U/t < 4, UHF
overestimates the Coulomb energy EC due to an under-
estimation of the local moments 〈S2

i 〉 (see Fig. 3). On the
other side, for U/t > 4, both EC and |EK | are apprecia-
bly underestimated. The inaccuracies in EC and |EK | for
U/t > 4 tend to cancel each other, which improves to some
extent the UHF result for Egs (see Fig. 2). Notice that
UHF reproduces quite accurately the local moments for
U/t > 4 (see Fig. 3). However, a single-determinant state
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Fig. 3. (a) Kinetic energy EK , (b) Coulomb energy EC , and
(c) local magnetic moments 〈S2

i 〉 of the Hubbard model on
a pentagonal ring at half-band filling (Ne = Na = 5). The
dashed-dotted and full curves correspond to lattice density-
functional theory (LDFT) using, respectively, equations (6)
and (7) for the interaction-energy functional. The dashed
curves refer to the unrestricted Hartree-Fock (UHF) calcula-
tions including noncollinear spin arrangements, and the crosses
to exact numerical diagonalizations.

fails to incorporate correlations, and in particular the fluc-
tuations between different equivalent spin configurations,
which should restore the broken spin symmetry and which
are often important in finite systems [42]. This reflects the
limitations of the broken symmetry UHF solutions, even
in the most general noncollinear case [26]. Notice that in
LDFT no artificial symmetry breaking is required in or-
der to account for correlation-induced localizations and
the resulting effects on the ground-state properties. The
present LDFT formalism with the dimer or 4th-order scal-
ing approximations to the interaction-energy functional
describes correctly the electronic correlations in a pen-
tagonal Hubbard ring. It can be therefore expected that
the method should remain accurate in more complex sys-
tems with five-fold symmetry such as the C20 cluster to be
discussed below. Moreover, comparison with exact results
also shows that the differences between UHF and LDFT
results for Egs, EK , and EC are a good quantitative esti-
mation of the correlation energies

In Figures 4 and 5 LDFT and UHF results are given for
several ground-state properties of the Hubbard model on
the cagelike C20 cluster illustrated in Figure 1. In the un-
correlated limit the ground-state energies Egs are the
same for |δ| ≤ 1, a consequence of the degeneracy of the
single-particle spectrum. As U/t increases, Egs increases
monotonously with a slope ∂Egs/∂U =

∑
i〈ni↑ni↓〉 > 0.

Since the average number of double occupations is larger

Fig. 4. Ground-state energy Egs of the Hubbard model on the
cagelike C20 cluster illustrated in Figure 1. Results are given as
a function of Coulomb interaction U/t for different numbers of
electrons Ne = Na + δ close to half-band filling (Na = 20) [40].
In the inset Egs − U is shown for δ = 1. The solid curves
correspond to lattice density-functional theory (LDFT) using
equation (7) for the interaction-energy functional. The dashed
curves refer to unrestricted Hartree-Fock (UHF) calculations
including noncollinear spin arrangements.

Fig. 5. (a) Kinetic energy EK , (b) Coulomb energy EC , and
(c) local magnetic moments 〈S2

i 〉 of the cagelike C20 Hubbard
cluster at half-band filling (δ = 0). The dashed-dotted and full
curves correspond to lattice density-functional theory (LDFT)
using, respectively, equations (6) and (7) for the interaction-
energy functional. The dashed curves refer to unrestricted
Hartree-Fock (UHF) calculations including noncollinear spin
arrangements.
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for larger number of electrons the degeneracy with respect
to δ is removed at finite U/t. On the other side, in the
strongly correlated limit, Egs vanishes at half-band filling,
while for δ = −1 (δ = 1) Egs (Egs −U) remains negative.
The U/t dependence of Egs in C20 follows similar trends as
in the pentagonal ring [40]. The UHF calculations repro-
duce the exact limits for U/t = 0 and U/t = ∞, and agree
qualitatively with LDFT for finite values of the Coulomb
repulsion. However, the quantitative differences can be
quite significant particularly for intermediate and large
U/t (e.g., 26% for U/t � 36). It is interesting to observe
that electron correlations have also been found to play a
central role in ab initio calculations of the ground-state
energy of C10 and C20 isomers [17]. While the Hubbard
Hamiltonian is probably too simple to determine accu-
rately the binding energies of the various structures, it
has been shown to provide an appropriate framework for
assessing the importance of correlation effects in nanoclus-
ters [43].

The effects of correlations are more significant in the
kinetic energy EK , Coulomb energy EC , and local square
moment 〈S2

i 〉 shown in Figure 5 for δ = 0. The differences
between UHF and LDFT calculations for EK and EC are
similar to the corresponding differences between UHF and
exact results for the pentagonal ring and can be quali-
tatively understood in similar terms. In the case of C20

one may notice that the UHF results for the local square
moment 〈S2

i 〉 are the same as in the uncorrelated limit
for U/t < 2.2. Therefore, they are significantly underesti-
mated. For stronger Coulomb repulsions (U/t > 2.2) 〈S2

i 〉
increases rapidly reaching values that are very close to the
LDFT results for U/t � 4 (see Fig. 5). This behavior is
related to the U/t dependence of the self-consistent solu-
tion of the UHF equations. For 0 ≤ U/t ≤ 3.1 the UHF
charge distribution is not uniform due to the four-fold
degeneracy of the single-particle spectrum at the Fermi
energy. Moreover, for U/t < 2.2 the UHF ground state
shows a weakly ferromagnetic solution with very small
local spin polarizations. In this way advantage is taken
from the single-particle degeneracy in order to reduce the
Coulomb-repulsion energy without increasing significantly
the kinetic energy. For U/t > 2.2 the system starts to
develop an AF spin-density wave which coexists with a
weak charge-density wave for 2.2 < U/t < 3.1. Only for
U/t > 3.1 the AF-like magnetic order valid for strong in-
teractions is definitely settled and the charge distribution
becomes then uniform throughout the cluster. An illustra-
tion of the UHF magnetic order in the large U/t regime is
shown in Figure 6. Notice the noncollinearity of the local
spin polarizations 〈�Si〉, which form angles of about 138 de-
grees between NNs. This value is smaller than the angle
between NN 〈�Si〉 in an isolated pentagonal ring (144 de-
grees) because of frustration effects between the pentagons
in the C20 topology (see Figs. 1 and 6). Further increase
of the Coulomb repulsion beyond U/t = 3.1 only results
in an increase of the size of the local moments keeping the
magnetic order unchanged.

The charge excitation gap is given by

∆Ec = Egs(Ne + 1) + Egs(Ne − 1) − 2Egs(Ne) , (8)

Fig. 6. Illustration of the distribution of the local spin polar-
izations 〈�Si〉 in an undoped cagelike C20 cluster as obtained
by using the Hubbard model and the unrestricted Hartree-
Fock approximation (δ = 0). Due to spin-rotational invariance

only the relative orientations of 〈�Si〉 are physically meaningful.
The three-dimensional cluster structure (see Fig. 1) is mapped
onto a plane in order to ease the visualization. The radius of
the circle on each atomic site i is proportional to |〈�Si〉|. The

arrows represent the projection of 〈�Si〉 onto the xy-plane which
is the plane containing the outermost pentagon. Shaded circles
(open circles) indicate that the perpendicular component 〈Sz

i 〉
is positive (negative).

where Egs refers to ground-state energy. It is a property
of considerable interest since it measures the low-energy
excitations associated with changes in the number of elec-
tron Ne and is thus very sensitive to electron correlation
effects. In Figure 7 results are shown for ∆Ec of the C20

Hubbard cluster at half-band filling (Ne = Na). The corre-
sponding calculations for the pentagonal ring are reported
in the inset for the sake of comparison. At half-band filling
∆Ec = 0 for U = 0, despite the finite size, due to the de-
generacy of the single-particle spectrum in both the ring
and C20. ∆Ec increases with increasing U/t approaching
the limit ∆E → (U − wb) for U/t → ∞, where wb is the
bottom of single-particle spectrum of the cluster (wb = 2t
for the ring and wb = 3t for C20). The LDFT results and
the exact calculations for Na = 5 yield a linear depen-
dence of ∆Ec as a function U/t for U/t 
 1. This implies,
in particular for C20, that ∆Ec > 0 for arbitrary small
U/t, in contrast to the UHF result. Comparison with ex-
act diagonalizations for Na = 5 indicates that the LDFT
gap is not overestimated. The UHF calculations fail to
reproduce the correct U/t dependence of ∆Ec showing
once more the importance of correlations. Notice that the
differences between UHF and exact or LDFT results are
qualitatively similar for C20 and for the pentagonal ring,
which indicates that the contribution of correlations to
∆Ec are comparable in both cases.
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Fig. 7. Charge excitation gap ∆Ec of the Hubbard model on
the cagelike C20 cluster as a function of Coulomb interaction
U/t. The solid (dashed) curves correspond to LDFT (UHF). In
the inset figure results are given for the pentagonal Hubbard
ring. Here the crosses refer to exact diagonalizations.

4 Conclusion

A density-functional approach to lattice-fermion models
has been applied to study the ground-state properties of
the Hubbard Hamiltonian on a cagelike C20 cluster. The
ground-state energy, the kinetic and Coulomb contribu-
tions, and the charge excitation gap have been determined
as a function of U/t for dopings δ close to half band filling.
The importance of electron correlations has been quanti-
fied by performing noncollinear Hartree-Fock calculations.
Comparisons with exact diagonalizations and with UHF
in the case of a pentagonal ring demonstrate the abil-
ity of LDFT to describe subtle correlation effects in a
very simple and systematic way. It is therefore expected
that LDFT should be an efficient tool for investigating the
properties of strongly correlated fermions in more complex
clusters and nanostructures, which are otherwise very dif-
ficult to tackle with other accurate methods.

The present LDFT study of clusters encourages the de-
velopment of more flexible interaction-energy functionals
in order to determine the properties of finite systems with
lower symmetry. As a first step it would be interesting to
extend the calculations to fullerene structures having dif-
ferent types of bonds, for example C60. In these cases the
functional dependence of W [γij ] is more complex and one
has to consider at least two different NN density-matrix
elements, within and between pentagons, even if one as-
sumes that the hopping integrals are the same. The sym-
metry of these bonds is actually different despite the fact
that all sites are equivalent. The interaction-energy func-
tional should be generalized following previous works on
dimerized 1D chains [35]. The domain of representability
of γij and the accuracy of the scaling hypothesis could be
explicitly tested for smaller similar clusters like C12 by

solving Levy’s constrained search [28,32]. Furthermore,
the functional dependence of W for low-symmetry clus-
ters deserves to be explored by taking into account charge
transfers and eventual redistributions of the spin density
between non-equivalent sites. This should open the way
to investigations of correlation effects in a variety of com-
plex physical situations such as metal clusters, disordered
systems, and low-dimensional nanostructures.
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